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Abstract
It is shown that using a generalized gradient approximation (GGA) functional
describing exchange and correlation (xc) effects in electronic structure
calculations implies additional xc terms in the virial theorem and the pressure
tensor. These new expressions generalize the forms well known in the local
density approximation and are useful for checking the numerical precision of
self-consistent field calculations for atoms and solids, and for accurate pressure
computations in heavy elements. Numerical examples are given.

1. Introduction

The Kohn–Sham formulation of density functional theory [1] for the study of electronic systems
has known recently new developments with the use of better approximations of the exchange
and correlation (xc) energy functional [2]. In particular, the generalized gradient approximation
(GGA) [3–5] has been shown to be powerful in the case of systems having large gradients of the
electron charge density. It can even be successfully applied to localized systems such as atoms
and molecules. From a practical point of view, analytical expressions for this xc functional
have been proposed, from which the xc potential is easily derived.

The implementation of GGA potentials in electronic structure routines, instead of
traditional LDA ones, has several consequences on the formulation of the virial theorem,
that have not been underlined up to now, at least to our knowledge. The aim of this paper
is to discuss this point. In section 2, we derive the virial theorem in the case of GGA by
expressing the total electronic pressure in terms of energy integrals; second, we generalize
an expression known as the ‘pressure tensor formula’ (spherical symmetry) involving only
quantities calculated on the surface of the atomic cell. Therefore, two forms are obtained for
the pressure: their numerical consistence, and their comparison with the pressure obtained
by numerical differentiation of the total energy with respect to volume, is a very powerful
test of the accuracy of the electronic structure calculations. In section 3, we consider the
implementation of the GGA in a standard APW muffin-tin bandstructure code, and show that
an additional surface term must be introduced in the APW matrix elements in order to deal
with the variational principle. The pressure formula is also adapted to this case. Examples of
numerical results are given in section 4.
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2. GGA and the virial theorem

2.1. The pressure from the virial theorem

Let us consider an atom in a spherical box of volume �. It is well known that the total pressure
can be written as [6]

3P� = 2K + U + Wxc (1)

where K is the total kinetic energy and U is the total potential energy including the interaction
of the electrons with the nucleus and the Hartree electron–electron interaction. The last term
is the xc contribution. Equation (1) is the most general form of the virial theorem.

In the local density approximation (LDA), restricted for simplicity to the unpolarized case,
Wxc is [6]

WLDA
xc = −3ELDA

xc + 3
∫
�

deLDA
xc (n)

dn
n d3r (2)

with n(r) the electron charge density. The total xc energy is

ELDA
xc =

∫
�

eLDA
xc (n) d3r (3a)

and the xc potential

V LDA
xc = deLDA

xc (n)

dn
. (3b)

Now, in the case of the GGA, the xc energy depends also on the charge density gradient.
Following Perdew [3–5], we introduce the two variables:

s = |∇n|
2kFn

= |∇n|
λsn4/3

(4a)

where kF is the Fermi momentum (λs = 2(3π2)1/3), and

t = |∇n|
2kT F n

= |∇n|
λtn7/6

(4b)

where kT F is the Thomas–Fermi screening constant (λ2
t = 8λs/π ). The variable s is adapted

to the description of the gradient effects in the exchange energy while t is relevant to the
correlation energy. Therefore, the xc GGA energy functional can be written as

EGGA
xc =

∫
�

eGGA
xc (n, s, t) d3r. (5)

To establish the virial theorem, one has to take the derivative of the total energy with respect to
the volume �. The way to do it is to make a change of space coordinate and of charge density
function: r = Sx, n(r) = f (x)/S3, where S is the atomic sphere radius. Doing so, the xc
energy becomes

EGGA
xc = S3

∫ 1

0
exc

(
f

S3
,

|∇f |
λsf 4/3

,
|∇f |
λtf 7/6

S−1/2

)
4πx2 dx. (6)

Because the total energy is stationary with respect to the charge density variations δf at constant
volume, the change in the total energy when the volume changes comes from the variation δS

of the explicit variable S only. Thus we find

WGGA
xc = −3EGGA

xc + 3
∫
�

∂eGGA
xc (n, s, t)

∂n
n d3r +

1

2

∫
�

∂eGGA
xc (n, s, t)

∂t
t d3r. (7)

It should be noticed that there is no contribution from the derivative with respect to s because the
variable s has no explicit dependence on S. Equation (7) is the generalization of equation (2)
to the GGA case. The total pressure is obtained by inserting equation (7) into equation (1).
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2.2. The GGA xc potential

Before deriving another expression for the electronic pressure, we need to go into some details
of the GGA xc potential. Starting from equation (5) and performing a variation δn(r) of the
density n(r), we obtain

δEGGA
xc =

∫
�

∂eGGA
xc (n, s, t)

∂n
δn d3r +

∫
�

∂eGGA
xc (n, s, t)

∂(s2)

(
2∇n · ∇δn

λ2
s n

8/3
− 8

3

|∇n|2
λ2
s n

11/3
δn

)
d3r

+
∫
�

∂eGGA
xc (n, s, t)

∂(t2)

(
2∇n · ∇δn

λ2
t n

7/3
− 7

3

|∇n|2
λ2
t n

10/3
δn

)
d3r. (8a)

The integrals containing a product of gradients can be integrated by parts in order to factorize
δn(r), and, after some transformations, equation (8a) takes the form

δEGGA
xc =

∫
�

V GGA
xc δn d3r + surface integrals. (8b)

The xc potential is

V GGA
xc = ∂eGGA

xc (n, s, t)

∂n
− ∇

(
∂eGGA

xc (n, s, t)

∂s

∇n

|∇n|
1

λsn4/3

)
− 4

3

∂eGGA
xc (n, s, t)

∂s

s

n

−∇
(
∂eGGA

xc (n, s, t)

∂t

∇n

|∇n|
1

λtn7/6

)
− 7

6

∂eGGA
xc (n, s, t)

∂t

t

n
. (9)

The stationarity of the total energy requires us to get rid of the surface integrals. This can be
achieved by imposing boundary conditions such that∫
"

∂eGGA
xc (n, s, t)

∂(s2)

δn

λ2
s n

8/3
∇n d" +

∫
"

∂eGGA
xc (n, s, t)

∂(t2)

δn

λ2
t n

7/3
∇n d" = 0 (10a)

for any δn on the surface ". When the system is confined in a spherical box (finite or infinite),
such a condition is fulfilled by imposing

|∇n|" = 0. (10b)

If cancellation of these integrals cannot be obtained through the boundary conditions, the
surface terms must be accounted for in the solution of the variational problem. Special cases
occurring in band structure methods where it is not possible to impose boundary conditions
on the ‘muffin-tin’ spheres will be discussed in section 3. The pressure given by equations (1)
and (7) is identical to the negative of the derivative of the total energy with respect to
volume only if this total energy resulting from the DFT calculation with the GGA potential of
equation (9) is stationary with respect to any first order variation δn(r).

It is also worth noting that the GGA xc potential is singular at the origin. Equation (9)
contains Laplacian terms which dominate the behaviour for r → 0 such that the potential
behaves as

V GGA
xc → −z

r
(11a)

z = 4

(
∂eGGA

xc (n, s, t)

∂(s2)

1

λ2
s n

8/3
+
∂eGGA

xc (n, s, t)

∂(t2)

1

λ2
t n

7/3

)
dn

dr

∣∣∣∣
r=0

. (11b)

This singularity modifies the effective nuclear charge which fixes the expansion of the wave
functions at small r . The expansion of a radial part of angular momentum l is

φl(r) = Arl
(

1 − Z∗

l + 1
r + · · ·

)
. (11c)
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Our experience is that the use of the effective charge Z∗ = Z + z is necessary in the wave-
function initialization if accurate calculations are desired, at least in light materials. Typical
values of z for atoms are 0.039 for H and Be and 0.041 for Al. For solids under normal
conditions, we have found lower values: 0.018 in H, 0.028 in Be and 0.033 in Al.

2.3. A second expression for the pressure: the ‘pressure tensor’ formula

In the LDA case, it is well known that the pressure of equations (1) and (2) can be transformed
to [7–9]

P = PK + [nV LDA
xc − eLDA

xc ]r=S (12a)

PK = 1

8π

∑
k,l

|φk,l(S)|2
[
(Dk,l − l)(Dk,l + l + 1)

S2
+ 2(εk,l − V (S))

]
(12b)

where V (r) is the total effective potential. φk,l is the radial part of an occupied electronic state
of angular momentum l satisfying

d2(rφk,l)

dr2
+

(
2(εk,l − V ) − l(l + 1)

r2

)
rφk,l = 0 (12c)

and Dk,l its logarithmic derivative on the boundary

Dk,l = S
1

φk,l(S)

dφk,l

dr

∣∣∣∣
r=S

. (12d)

The electron charge density on the surface is given by

n(S) =
∑
k,l

|φk,l(S)|2
4π

. (12e)

A summary of the method used to derive these formulae is given in appendix A. Equation (12b)
may also be obtained by working out the general form of the pressure tensor and keeping its
radial component only.

In the GGA case, we have used the same kind of technique to derive the following pressure
formula:

P = PK + [nV GGA
xc − eGGA

xc ]r=S +

[
∂eGGA

xc

∂s

(
3ξ

Sλsn1/3
+ s

)
+
∂eGGA

xc

∂t

(
3ξ

Sλtn1/6
+ t

)]
r=S

(13)

where the arguments of eGGA
xc are omitted for simplicity. ξ takes the value +1 when the density

gradient is positive and −1 when negative. The main lines of the derivation of this formula
may be found in appendix A.

The interest of this pressure tensor formula is that it allows us, as does its LDA counterpart,
to get rid of the very important numerical cancellations between kinetic and Coulomb energies
occurring in the virial pressure formula.

Thus, the calculation of the pressure in an electronic system where xc effects are described
by the GGA can, as in the LDA case, can be done following three routes.

(i) Simple application of the definition P = −dE/d� either by a finite difference technique
or by differentiation of an analytical fit of the energy. The numerical cost of this method can
be high, because several energies are needed to calculate the pressure for a single volume.
The accuracy on pressure may be poor if too many digits are lost in the differences.
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(ii) Use of the virial theorem, equation (1): a single calculation gives the total energy and
the pressure at the same time. But here again, large numerical cancellations do occur
(between the various terms in the r.h.s. of equation (1)), and the remaining number of
significant digits in the pressure is small.

(iii) Use of the pressure tensor formula. As in (ii), the pressure is obtained in the same
calculation as the total energy for the volume of interest, and the advantage is that all the
cancellations between large kinetic and potential terms have been removed analytically
when transforming equation (1) to equation (3). Therefore, this formula, which handles
only small quantities, is potentially the most accurate.

3. GGA in the APW band structure method

3.1. GGA and the variational principle

When the GGA is used for band structure calculations, several cases must be considered. If the
band structure method uses a set of basis functions which are continuous and have continuous
derivatives everywhere in the Wigner–Seitz (WS) cell, then the stationarity conditions in
equation (10a) are satisfied because∫

"

∇n d" = 0

on the WS cell surface results immediately from the Bloch condition imposed on electron
states.

However, there are also methods using basis functions with discontinuous derivatives
inside the WS cell. This is the case of the augmented plane wave (APW) method, where the
basis functions are numerical solutions of the wave equation in a spherical potential inside the
‘muffin-tin’ (MT) spheres continuous with plane waves outside these spheres. The derivatives
are discontinuous on the MT sphere surfaces [10]. In the APW method, the eigenfunction for
a state k is expanded as

*k =
∑
j

Ak,j�
−1/2 exp(i(k + Kj ) · r) (14)

outside the MT sphere. � is the volume of the WS cell and Kj a reciprocal lattice vector. The
correct way to deal with the surface integrals in the l.h.s. of equation (10a) is to include them
in the variational principle. On the boundary of the MT sphere, the relevant quantity is∑
i,j

A∗
k,iδAk,jMij (15a)

Mij =
(
∂eGGA

xc (n, s, t)

∂s

ξ

λsn4/3
+
∂eGGA

xc (n, s, t)

∂t

ξ

λtn7/6

)
r=S

4πS2

�
j0(|Ki − Kj |S) (15b)

in which S is the MT radius and j0 the spherical Bessel function. The additional matrix
elements Mij are included in the APW determinant in order to insure the stationarity of the
total energy.

3.2. Pressure in the APW case

Calculating the pressure with the virial theorem in the APW method, even in the LDA, deserves
special attention. The derivative discontinuity is also reflected in the APW matrix elements
through a surface contribution to the kinetic energy. The total kinetic energy is divided into
three contributions from inside the MT, from the MT surface and from the interstitial region [10]

K = Kin + KS + Kout . (16)
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Kin is the standard form of the kinetic energy, expressed in terms of the product of the wave
functions and their Laplacian. The expression of the two other contributions is given in
appendix B. Kin can be transformed to give a pressure contribution PK,in similar to that
appearing in equation (12b). Finally, the total APW pressure takes the form

3P� = 3(PK,in + Pout )� + 2KS + 4πS3

[
nV GGA

xc − eGGA
xc

+
∂eGGA

xc

∂s

(
3ξ

Sλsn1/3
+ s

)
+
∂eGGA

xc

∂t

(
3ξ

Sλtn1/6
+ t

)]
r=S

. (17)

Details of this formula can be found in appendix B. Deep core states do not contribute to the
pressure in equation (17). However, weakly bound core levels may bring some contribution.
In such cases, their treatment must be considered with care: when calculated with a single
atomic-like wave function, the boundary condition, which must be compatible with the total
energy stationarity, may influence the value of the pressure. The treatment of these core states
as energy bands might in that case be preferable.

4. Numerical applications

4.1. GGA functional

To illustrate the pressure calculations according to the formulae presented in the preceeding
sections, we use parametrized forms of the GGA functional proposed in the literature by
Perdew et al [3–5]. Their general form is (paramagnetic case)

eGGA
xc (n, s, t) = eGGA

x (n, s) + eGGA
c (n, t) (18a)

eGGA
x (n, s) = −3

4

(
3

π

)1/3

n4/3F(s) (18b)

eGGA
c (n, t) = eLDA

c (n) + nH(n, t) (18c)

H(n, t) = γ ln

(
1 +

β

γ
t2 1 + At2

1 + At2 + A2t4

)
(18d)

A = β

γ

[
exp

(
− 1

γ

eLDA
c

n

)
− 1

]−1

. (18e)

These functionals differ in the form of F(s), the approximation chosen for the LDA part in
equations (18c, e) and the coefficients β and γ in equations (18d, e).

For the exchange part, several forms are available. One of them is [3]

F(s) =
(

1 + a
s2

m
+ bs4 + cs6

)m

(18f)

with the coefficients a = 0.0864, b = 14, c = 0.2, m = 1/15. A more recent one is, with
κ = 0.804 and µ = 0.235 [5],

F(s) = 1 + κ − κ

1 + µs2/κ
. (18g)

Our purpose is not to establish which one of these forms is the most accurate in the case of
atoms or solids. We only want to illustrate the consequences of using the GGA for calculating
the pressure in such systems. So we keep in our computations the particular forms implemented
in our codes, which are different for historical reasons. For the LDA part of the correlation
eLDA
c (n), we have used the Hedin–Lundqvist form [11] in atoms. For solids, we have used the

Ceperley–Alder results in either the Perdew–Zunger or Perdew–Wang representations [12, 13].
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Table 1. GGA calculations for free atoms. K is the kinetic energy, U the total Coulomb energy,
EGGA

xc the xc energy, E the total energy, δn and δt the xc terms defined in equations (19b, c) and
X the virial, which should be zero. All energies are in Ryd. In Be, Al and Ge, the bottom line is
from [14].

K −U −EGGA
xc −E −δn δt virial X

Hydrogen
0.907 1107 1.319 1672 0.523 8450 0.935 9016 0.696 083 0.043 312 −0.000 0042

Beryllium
29.118 22 52.939 85 5.467 54 29.289 15 7.266 58 0.200 99 −0.000 013

5.622 29.346

Aluminium
484.0656 931.7334 37.2862 484.9540 49.5555 0.8201 −0.000 030

42.524 484.996

Germanium
4151.321 5 8147.372 0 158.174 8 4154.2253 210.295 6 2.1844 0.000 70

162.008 4155.236

For the gradient correlation part in equations (18d, e), the value ofβ is 0.066 725, but two values
of γ have been proposed: 0.024 735 [4] and 0.031 0906 [5]. In the following applications, we
will indicate in each case the form used.

The analytic form of the correlation potential is given in [4]. Let us just mention that a
contribution is missing from equation (33) of this reference. A term

−nt
∂2H(n, t)

∂n∂t

involving the cross derivative of H(n, t) with respect to n and t should be added.

4.2. Test for free atoms

For free atoms, the pressure vanishes, so that the virial theorem, equations (1) and (7), gives

X = 2K + U − 3EGGA
xc + 3δn + 1

2δt = 0 (19a)

δn =
∫

∞

∂eGGA
xc

∂n
n d3r (19b)

δt =
∫

∞

∂eGGA
xc

∂t
t d3r. (19c)

We have performed calculations for several atoms. The radial mesh of points is
exponential: rn+1 = rn exp(h) with r1 = 0.003/Z and h = 0.03. The boundary condition is
that of exponential decay for all the eigenstates at S → ∞:

1

Sφ(S)

d(rφ)

dr

∣∣∣∣
r=S

= −√−2ε (20a)

which implies for the total charge density at infinity

|∇n|
n

= −2
√

−2εm (20b)

where εm is the eigenvalue of the highest occupied state. Numerical results, obtained with the
exchange functional of [3], the GGA correlation of [4] and the eLDA

c (n) of Hedin and Lundqvist,
are shown in table 1. In Be, Al and Ge, comparison is made with atomic calculations reported
by Juan and Kaxiras [14], where the GGA form of [4] is used.



294 P Legrand and F Perrot

Table 2. Comparison of the pressures calculated using the virial theorem (equations (1) and (7))
and by numerical differentiation of the total energy. Energy units are Ryd.

Boundary cond. S (au) −E 3P� (virial) 3P� (differ.)

dφ

dr

∣∣∣∣
r=S

= 0 2.50 1.321 691 −0.977 975 −0.977 976

φ(S) = 0 3.00 0.747 663 0.790 468 0.790 468

We suspect a misprint in the Al exchange energy in table I of [14], because the value is
the same as that reported for Si and very different from ours.

Our results show that the numerical accuracy of the calculations is such that X, which
should be zero, vanishes with a precision of 10−5 to 10−7 relative to the total energy. The
differences between the total energy results of Juan and Kaxiras and ours may probably be
attributed to the different exchange F(s) and different LDA part of correlation used in the
calculations.

4.3. Test for an H atom confined in a spherical box of finite size

Now we want to check that equations (1) and (7) in the GGA are consistent with the pressure
obtained by numerical derivation of the total energy with respect to volume. We have calculated
an H atom in a spherical box of radius S with two boundary conditions compatible with a
vanishing gradient of the density, which are either the wave function or its derivative vanishes
for r = S. The numerical derivative of the total energy is computed using a four point formula
with values of the box radius spaced by 9S = 0.05 au. The functional is the same as in
section 4.2. The results are shown in table 2.

It is to be noticed that, in this calculation, the additional terms in the second pressure
formula (tensor formula, equation (13)), due to the use of the GGA, vanish because s = t = 0
with the first boundary condition, and s and t are infinite with the second boundary condition.
In both cases, the two derivatives of exc with respect to s and t vanish on the sphere, so that
the tensor pressure formula is formally identical to its LDA counterpart. This will not happen
in APW–MT calculations, as will be seen in the next subsection.

4.4. APW muffin-tin calculations

The GGA is expected to improve the calculation of the equation of state of solids. A large
number of results have been published, often comparing the equilibrium parameter and bulk
modulus obtained in LDA and GGA. We will refer to some of them for comparison with our
results. Here we present total energy and pressure APW calculations performed in the MT
approximation. In this case, the GGA is used inside the MT sphere where the charge density
can have rather large gradients, even in simple systems. The gradient correction has no effect
outside the spheres where the electron density is assumed to be constant. Because the APW
basis functions have discontinuous derivatives on the MT sphere, as already mentioned in
section 3, attention must be paid to the implementation of the GGA. We will first report
calculations for metallic hydrogen and then results for the equilibrium volume and bulk
modulus of hexagonal close packed beryllium, face-centred cubic aluminium and body-centred
cubic rubidium.

4.4.1. Hydrogen. Hypothetic metallic hydrogen in the bcc phase has been calculated using
the APW–MT method to show that, in a light solid, the numerical calculations allow us to
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Table 3. Comparison of the pressures calculated in bcc hydrogen by the virial theorem formula,
the tensor formula, equation (B6), or by numerical differentiation of the total energy.

Atomic volume P (virial) P (tensor) P (differ.) −E

(au) (kbar) (kbar) (kbar) (Ryd)

22.00 −83.47 −83.75 1.073 7488
20.18 −3.77 −4.09 1.074 3201
20.00 5.76 5.34 5.60 1.074 3189
19.82 15.40 15.07 1.074 3064
18.00 142.1 141.8 1.073 3803

Table 4. Electronic pressure calculated in the GGA for Be near equilibrium using the three possible
forms of the pressure. The total energy is also shown.

Density P (virial) P (tensor) P (differ.) Energy per atom
(g cm−3) (kbar) (kbar) (kbar) (Ryd)

1.9727 56.52 55.62 56.41 −29.5274

obtain a good agreement between the various expressions of the pressure, even if four digits
are lost in comparing the total energies, as can be seen in table 3.

The agreement between the different forms of the pressure is better than half a kbar.

4.4.2. Beryllium. The calculations have been done with 768 k-points in the entire Brillouin
zone. It appeared that the treatment of the core 1s state had some consequence on the accuracy
of the results, so that we chose to treat this state as an energy band, on the same footing as the
valence states. The experimental ratio c/a = 1.5677 has been used.

We consider first a volume, of the order of the equilibrium volume, and compare the
electronic pressures calculated with the GGA xc [5] using the three possible methods: (a) from
the virial theorem, equations (1) and (7); (b) from the pressure tensor, that is local quantities
on the MT sphere, Equation (B6); (c) from the total energy and numerical differences. The
results are shown in table 4.

We see that the agreement between the various calculations is good, but slightly less than
in hydrogen when comparing the virial and tensor forms. The loss of accuracy is due to
accumulation of numerical errors for a larger number of electronic states. Nevertheless the
differences remain negligible compared to the zero point pressure (about 38 kbar). This is
because the model deals exactly with the required variational properties. Such an agreement
would not have been obtained with atomic-like core states satisfying boundary conditions not
suitably chosen (see below the Al case). In the light of these results we think that we can have
good confidence in our pressure calculations. The possibility of using calculation (b), which
avoids cancellation of large numbers, is an advantage which becomes more and more useful
in materials of increasing atomic number.

It is interesting to compare the GGA results [5, 13] with those of the LDA [15] and
with experiment [18]. Table 5 shows the theoretical total pressure in both approximations.
An approximate zero-point vibration contribution has been added to the electronic pressure;
it is calculated with a Debye temperature θD = 1440 K [16] and a Grüneisen parameter
γ = 1.18 [17]. The equilibrium volume and bulk modulus have been deduced from these
values and are given in table 6.

The GGA gives a significantly better equilibrium density than the LDA, but both xc
approximations lead to similar bulk modulus in rather good agreement with experiment.
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Table 5. Comparison of electronic and total pressures in Be, in the GGA and LDA calculations.

Density Pe (GGA) Pt (GGA) Pe (LDA) Pt (LDA)
(g cm−3) (kbar) (kbar) (kbar) (kbar)

1.7355 −90.7 −62.2
1.8296 −38.0 −6.0
1.8980 −50.6 −15.9
1.9348 30.0 66.2 −28.3 7.9
1.9727 56.5 94.3 −3.9 33.9
2.0120 85.1 124.5 22.5 61.9

Table 6. Equilibrium density in g cm−3 (upper row) and bulk modulus in GPa (lower row), as
obtained in GGA and LDA for hcp Be, compared to the experimental values [18].

GGA LDA Experiment

1.8383 1.9226 1.8404
126.2 124.3 115.5

Table 7. Influence of the additional xc term in the virial theorem (equation (7)), in the case of Al
near equilibrium.

Lattice a Pe Pe� δt /6
(au) (kbar) (Ryd) (Ryd)

7.4827 +5.30 +0.003 78 −0.131 30
7.5064 −1.98 −0.00 142 −0.131 35
7.5300 −8.17 −0.005 93 −0.131 36
7.5536 −14.6 −0.010 70 −0.131 40
7.5770 −20.7 −0.015 30 −0.131 44

4.4.3. Aluminium. Several comparisons between GGA and LDA results for aluminium have
been published in the past years [14, 19, 20]. We will not make these comparisons again here,
but present GGA calculations, performed with the functional of [5], to show the importance of
the new energy contribution appearing in the virial expression of the GGA pressure. The
calculations are performed with 2048 k-points in the entire Brillouin zone, and the core
states are calculated with atomic-like wave functions having, for the angular momentum l,
a logarithmic derivative (1/φ(S))(dφ/dr)|r=S = −(l + 1)/S on the MT sphere.

In table 7 we compare the new term in WGGA
xc , equation (7):

δt =
∫
�

∂eGGA
xc (n, s, t)

∂t
t d3r

(involving the derivative of the GGA xc energy with respect to the variable t), to the quantity
Pe�.

These results prove that the new pressure term produces a nearly constant pressure shift
because its variations are small compared to those of the whole pressure, but its neglect would
significantly alter the equilibrium volume.

Without including any zero-point vibration correction, the calculated equilibrium lattice
parameter is a0 = 7.501 au (3.969 Å) and the bulk modulus is B0 = 70.4 GPa. The most
recent similar calculations by Khein et al using an all-electron linearized APW method with the
Perdew–Wang GGA xc give respectively a0 = 7.74 au and B0 = 72.6 GPa [19]. On including
zero-point corrections with a Debye temperature θD = 428 K and a Grüneisen parameter
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γ = 2.19, the present calculated values become a0 = 7.534 au and B0 = 77.9 GPa. With
respect to experiment [21], a0 is 1% too small and B0 is 1% too large.

To end this comparison, let us emphasize again that the treatment of the core states may
have non-negligible consequences on the determination of the calculated equilibrium properties
of solids. In the calculations just above, the boundary condition imposed on the atomic-like
core states (a condition which determines the centre of gravity of the canonical energy bands
of the LMTO method [22]) is compatible with the required variational properties of the total
energy. If these boundary conditions are replaced by the condition of exponential decay at
finite S of the form given in equation (20), which does not imply the stationarity of the total
energy when the core wave functions vary, then the agreement between the various forms of
the pressure may be lost, and the value of the pressure deduced from the virial theorem may
change a lot. In the case of Al, the values given above change from a0 = 7.534 to 7.711 au,
and from B0 = 77.9 to 74.1 GPa. Even more important changes (+10% to −15% with respect
to experiment in B0) following the treatment of the core states have been reported elsewhere
[20]. The problem of the core states has been addressed in tungsten [23], where it is more
serious, the highest core state energy being −3.70 Ryd instead of −6.23 Ryd in Al. For Rb
(see below), the 4p level is so high (−1.62 Ryd) that the n = 4 shell must be treated as an
energy band.

4.4.4. Rubidium. In light materials, the three possible calculations of the pressure agree
rather well. But in heavier materials, the number of significant digits needed in the energy to
see a given variation δE increases. As an example, we see in table 8 that eight digits must be
stabilized in rubidium to obtain two digits in energy differences and in the pressures P (differ.)
calculated from a fit of these energies. Obtaining a third significant digit on this pressure would
require an improvement of one order of magnitude of the accuracy on energy, demanding more
iterations in the self-consistent process, more points in the r-grid, more points in the Brillouin
zone, . . .. The pressure calculated from the virial theorem, P (virial), also suffers a loss of
accuracy because of the very important numerical cancellations among the various energy
contributions occurring in the pressure of equation (1). The consequence of these accuracy
issues is that the two pressures begin to show important differences. The situation is not the
same with the pressure from the tensor formula, P (tensor), calculated with a much better
precision because it is free of numerical cancellations. All the digits shown for P (tensor) are
expected to be correct and this pressure is certainly the most reliable one. It can be noticed
that P (differ.) is in much closer agreement with P (tensor), a result which was not obvious.
We believe that the reason is that the errors in the stabilized total energies are quite systematic
when the volume changes, so that they cancel in the difference. Such a cancellation does not
happen in the virial calculation. In addition, the virial is not a variational quantity as is the
energy, so it is much more sensitive to small errors in the density.

We have calculated the equilibrium lattice parameter and bulk modulus of Rb. The results
in table 8 have been fitted for the energy to E = E0 + Aa + B/a + C/a2 and for the pressure
to P = −2(A − B/a2 − 2C/a3)/(3a2). The results are given in table 9.

In these equilibrium properties, ionic zero point motion has been taken into account using
the Debye model with a temperature θD = 56 K and a Grüneisen coefficient γ = 1.67 [17].
The experimental values are a0 = 10.56 au [24] and B0 = 30.6 kbar [25].

In conclusion to this discussion, we think that using the tensor formula is the best way
to calculate the pressure in all-electron calculations for heavy materials. The calculation by
numerical differences leads to the correct order of magnitude, but cannot give the same accuracy
at the same cost of computing time.
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Table 8. Total energy and electronic pressure calculated in the GGA for bcc Rb near equilibrium.
The 4s and 4p levels are treated as energy bands.

Lattice a P (virial) P (tensor) P (differ.) Energy per atom
(au) (kbar) (kbar) (kbar) (Ryd)

9.86 19 12.85 12 −5879.4630
10.24 12 6.19 6.3 −5879.4666
10.62 6.8 1.74 2.1 −5879.4682
11.00 3.4 −1.19 −1.2 −5879.4683
11.38 1.1 −3.10 −3.8 −5879.4672

Table 9. Equilibrium properties calculated in the GGA for bcc Rb.

From P (virial) From P (tensor) From E

Equilib. lattice a0 (au) 11.6 10.83 10.9
Bulk modulus (kbar) 16 27.78 28

5. Conclusion

We have shown how the use of a GGA xc functional modifies the expression of the virial
theorem in electronic systems, either infinite or finite in size. Terms associated with the new
variables depending on the electron charge density gradient (which are absent from the LDA
counterparts) must also be taken into account in the pressure tensor formula. Only when these
correct expressions are used can the three possible expressions of the pressure give identical
results. We have illustrated these points by numerical calculations for free atoms, atoms
confined in a spherical box and atoms in solids as calculated with the APW method. The
comparison of the pressures obtained in these three different ways gives confidence in the
calculational accuracy and provides a powerful check that the total energy is really stationary
with respect to variations of the charge density. In all-electron calculations for heavy elements,
the use of the tensor formula is, in our opinion, the most accurate way to compute the pressure
near equilibrium.

Appendix A. Derivation of the general pressure formulae

We consider an electronic system in the presence of a nucleus and having for simplicity
spherical symmetry. It can be, for example, a ‘compressed atom’ localized within a sphere
with appropriate boundary conditions. The extension of the formula to the case of an atom in
the MT sphere of the APW method is given in appendix B.

We start from equations (1) and (2) and show how to derive equations (12a, b). The
intermediate quantity to work with is

Lk,l =
∫ S

0
r3φ2

k,l

dV

dr
dr. (A1)

By several integrations by parts, and using the fact thatφk,l is a solution of the radial Schrödinger
equation (equation (12c)), Lk,l can be written

Lk,l = 2Kk,l − 1

2
S3|φk,l(S)|2

[
(Dk,l − l)(Dk,l + l + 1)

S2
+ 2(εk,l − V (S))

]
(A2)

where Kk,l is the kinetic energy of state k, l. Dk,l is defined in equation (12d). Summation
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over all the occupied states k, l gives, with PK given in equation (12b),∑
k,l

Lk,l = 2K − 4πS3PK. (A3)

Replacing in equation (A1) the potential with

V = −Z

r
+ Ve + Vxc (A4)

where Ve is the potential created by the electron charge distribution n(r), another form of
equation (A3) can be obtained:∑

k,l

Lk,l = −U + 4πS3n(S)Vxc(S) −
∫ S

0
Vxc

d(r3n)

dr
4πdr. (A5)

Identifying equations (A3) and (A5), we find that

2K + U = 3�[PK + n(S)Vxc(S)] −
∫ S

0
Vxc

d(r3n)

dr
4πdr. (A6)

This expression is valid in both the LDA and GGA cases. Now, we consider separately these
two cases in order to transform the last term in equation (A6).

A.1. LDA

In this approximation:

V LDA
xc

dn

dr
= deLDA

xc (n)

dr
(A7)

so that the integration of the last term is straightforward and equations (12a, b) are obtained.

A.2. GGA

The complex structure of the xc potential makes the last term in equation (A6) more difficult
to work out. Starting from equation (9), the terms containing gradients can be transformed.
Let us look for example at the first one:

∇
(
∂eGGA

xc

∂s

∇n

|∇n|
1

λsn4/3

)
= −4

3

∂eGGA
xc

∂s

|∇n|
λsn7/3

+
1

λsn4/3
∇

(
∂eGGA

xc

∂s

r

r
ζ(r)

)
(A8)

where ζ(r) is a constant piecewise function, the magnitude of which is unity with the sign of
the charge density derivative. At points of discontinuity of ξ , ∇ζ is a delta-function, but is
multiplied in equation (A8) by a factor which vanishes because s = 0, so that ∂eGGA

xc /∂s = 0
when |∇n| = 0. Finally,

∇
(
∂eGGA

xc

∂s

∇n

|∇n|
1

λsn4/3

)
= −4

3

∂eGGA
xc

∂s

s

n
+ ζ(r)

1

λsn4/3
r−2 d

dr

(
r2 ∂e

GGA
xc

∂s

)
. (A9)

With the same transformation of the term involving the derivative with respect to t , the potential
becomes

V GGA
xc = ∂eGGA

xc

∂n
− ζ(r)

1

λsn4/3
r−2 d

dr

(
r2 ∂e

GGA
xc

∂s

)
− ζ(r)

1

λtn7/6
r−2 d

dr

(
r2 ∂e

GGA
xc

∂t

)
. (A10)

On inserting equation (A10) into equation (9), the last term in equation (A6) can be integrated
by parts to give∫ S

0
V GGA
xc

d(r3n)

dr
4πdr = 3

∫ S

0

∂eGGA
xc

∂n
n dr +

1

2

∫ S

0

∂eGGA
xc

∂t
t dr +

∫ S

0

deGGA
xc

dr
4πr3dr

−3�

[
∂eGGA

xc

∂s

(
3ζ

Sλsn1/3
+ s

)
+
∂eGGA

xc

∂t

(
3ζ

Sλtn1/6
+ t

)]
r=S

. (A11)

This relation, together with equations (1) and (7), leads to the GGA pressure in equation (13).
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Appendix B. Application to the APW method

The MT surface contribution to the kinetic energy is [10]

KS =
∑

k

4πS2

�

∑
l

B2
k,l

1

φk,l(S)

dφk,l(r)

dr

∣∣∣∣
r=S

(B1)

where the Bk,l are the coefficients of the expansion of the spherically averaged charge density
of state k in terms of the radial parts inside the MT:

B2
k,l = (2l + 1)

∑
i,j

A∗
k,lAk,j jl(kiS)jl(kjS)Pl(k̂i · k̂j ) (B2)

with jl(x) the spherical Bessel function, Pl the Legendre polynomial of order l and
ki = |k + Ki |. Here, � is the total volume of the WS cell, not to be confused with the volume
4πS3/3 of the MT sphere.

The contribution Pout of the interstitial region of volume 9� to the pressure is

3Pout� = 2Kout +
1

2
QoutVout − 3

(
eLDA
xc (nout ) − nout

deLDA
xc (nout )

dn

)
9� (B3)

Kout =
∑

k

∑
i,j

A∗
k,iAk,j (ki · kj )

[
δij − 4πS3

�

j1(|Kj − Ki |S)
|Kj − Ki |S

]
(B4)

where Qout is the total electron charge in the intersticial region, nout = Qout/9� and Vout

is the total Coulomb potential outside the spheres if the origin of energies is such that this
Coulomb potential, as defined inside the MT spheres, takes the value −Qout/S for r = S.

The contribution of inside the MT sphere can be transformed from the integral virial form
to an expression in terms of local quantities on the sphere. If the derivation of appendix A is
resumed in the APW case, one obtains

3PK,in� = 1

2
S3

∑
k,l

B2
k,l|φk,l(S)|2

[
(Dk,l − l)(Dk,l + l + 1)

S2
+ 2(εk,l − V (S))

]
. (B5)

Finally, when using the GGA in the APW scheme, the pressure tensor formula is

3P� = 3(PK,in + Pout )� + 2KS + 4πS3

[
nV GGA

xc − eGGA
sc +

∂eGGA
xc

∂s

(
3ξ

Sλsn1/3
+ s

)

+
∂eGGA

xc

∂t

(
3ξ

Sλtn1/6
+ t

)]
r=S

. (B6)
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